An Algebraic Approach for stability Analysis of Linear Systems with Complex Coefficients

نویسندگان

  • S. N. Sivanandam
  • K. Sreekala
  • P. C. Tripathi
چکیده

In this paper employing Routh's table, a geometrical stability criterion for the analysis of linear time-invariant system is formulated. The proposed stability criterion is applied for the system, whose characteristic equation having complex coefficients. For this Routh like table is presented with complex terms and the signs pair-wise elements with the first column of the table are observed. The proof for the criterion is also given which is based on the Hurwitz's matrix and its determinants. It is found that the proposed method is termed as ''SIGN PAIR CRITERION'' and is illustrated with suitable examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and numerical solution of time variant linear systems with delay in both the state and control

In this paper, stability for uncertain time variant linear systems with time delay is studied. A new sufficient condition for delay-dependent systems is given in matrix inequality form which depends on the range of delay. Then, we introduce a new direct computational method to solve delay systems. This method consists of reducing the delay problem to a set of algebraic equations by first expand...

متن کامل

A Software for Prediction of Periodic Response of Non-linear Multi Degree of Freedom Rotors Based on Harmonic Balances

It is the purpose of this paper to introduce a computer software that is developed for the analysis of general multi degree of freedom rotor bearing systems with non-linear support elements. A numerical-analytical method for the prediction of steady state periodic response of large order nonlinear rotor dynamic systems is addressed which is based on the harmonic balance technique. By utilizing ...

متن کامل

Algebraic Solving of Complex Interval Linear Systems by Limiting ‎Factors‎

In this work, we propose a simple method for obtaining the algebraic solution of a complex interval linear system where coefficient matrix is a complex matrix and the right-hand-side vector is a complex interval vector. We first use a complex interval version of the Doolittle decomposition method and then we restrict the Doolittle's solution, by complex limiting factors, to achieve a complex in...

متن کامل

Sequential second derivative general linear methods for stiff systems

‎Second derivative general linear methods (SGLMs) as an extension‎ ‎of general linear methods (GLMs) have been introduced to improve‎ ‎the stability and accuracy properties of GLMs‎. ‎The coefficients of‎ ‎SGLMs are given by six matrices‎, ‎instead of four matrices for‎ ‎GLMs‎, ‎which are obtained by solving nonlinear systems of order and‎ ‎usually Runge--Kutta stability conditions‎. ‎In this p...

متن کامل

Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients

In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012